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Explosively driven compressed magnetic field (CMF) power supplies have been used for a 
variety of applications. A two-dimensional MHD computational model, entitled COMAG, 
has been constructed to study the characteristics of helically wound CMF generators. The 
code combines an existing Eulerian materials response code with a two-dimensional (2D) 
magnetic field solver to compute the self-consistent interaction between the field and the 
conductors, including magnetic forces, Joule heating, and nonlinear resistive diffusion. 
Sample results are presented. 

I. INTRODUCTION 

Explosively driven compressed magnetic field (CMF) power supplies provide 
compact inexpensive generators of high current (megamperes), high energy 
(megajoules), and short current risetime (microseconds). Applications of these 
generators in plasma, solid-state, particle, and optical physics research have been 
reviewed by Knoepfel [I] and Fowler [2]. 

Helically wound generators, described by Shearer et al. [3] and Crawford and 
Damerow [4], have the advantage of a high initial inductance, permitting a potentially 
high amplification factor. Figure 1 shows a sketch of a typical generator. An initial 
pulsed current in the outer helical coil winding establishes magnetic flux between 
the coil and the inner metallic cylinder, referred to as the armature. The armature 
contains high explosive, which is detonated from one end, driving the armature 
towards the coil at high velocity. This action compresses the initial magnetic flux, 
leading to an amplification of the electrical current which can be delivered to an 
external load. The entire process converts chemical energy stored in the explosive 
into electrical energy delivered to the load. 
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HELICAL COIL 

HIGH EXPLOSIVE 

FIG. 1. Simplified CMF generator. 

Calculations described in the preceding references and in other recent work [5-71 
have separately examined various elements of the generator behavior, always in a 
one-dimensional approximation. This work describes a two-dimensional MHD 
model (entitled COMAG) used to study helically wound CMF generators. The 
model includes a complete mechanical response description using the CSQ finite 
difference hydrodynamic code [8]. The modifications necessary for this application 
are given in Section II as are methods of coupling the material response and magnetic 
field solver. 

A two-dimensional finite difference magnetic field solver has been developed to 
treat the flux compression and the nonlinear temperature-dependent resistive diffusion 
into both conductors. The field solver has been coupled self-consistently to the 
hydrocode to properly include magnetic forces and Joule heating. The final element 
of the code is a circuit equation used to describe the self-consistent interaction between 
the generator and the external load. The circuit model retains an important feature 
of the helical coil, namely, the constancy of the total current in each loop of the coil. 

The initial development of the code, plus a number of comparisons with analytic 
test cases, has been reported elsewhere [9, IO]. Section III of this work briefly sum- 
marizes all elements related to the field solver. Section IV discusses the choice of the 
computational mesh, while the boundary conditions are addressed in Section V. 
The relation of the generator inductance and resistance to the field quantities is 
described in Section VI. Section VII is concerned with details of the numerical 
methods for solving the field equations, with sample results summarized in SectionVIII. 

II. MECHANICAL RESPONSE/CSQ MODIFICATIONS 

CSQ is a two-dimensional hydrodynamic program with energy flow and material 
strength. Extensive descriptions of the program are available [8]. The code has been 
widely used at a number of laboratories for a variety of calculations. 

#I/25/4-2 
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CSQ employs the finite difference analogs of the Lagrangian equations of motion 
(a material-fixed coordinate system) with a continuous rezoning to a space-fixed 
Eulerian coordinate system. Material strength effects, such as elastic-plastic behavior 
and fracture behavior are treated. An energy flow calculation includes radiation and 
various forms of thermalconduction. Realistic material descriptions with material phase 
transitions (solid-liquid, liquid-vapor, solid-solid, etc.) are available [l 11. Various 
high explosive and other energy sources are included. Many of these features are 
necessary for proper description of the CMF generators. 

The program has several other features which proved useful for the present applica- 
tion. CSQ was built with variable finite difference cell storage. The number of cell 
variables is adjusted to fit the present calculation. This means that no extensive 
modifications were required for storage of magnetic field quantities, current densities, 
etc. All restart, data editors, and plot programs work without modifications. This 
includes plots of the new quantities. 

Another feature of CSQ that is of importance to the present problem is the size 
of the finite difference mesh which it can consider. Very marginal zoning for the 
problem under consideration requires a two-dimensional (2D)mesh of more than 
100 x lOO--IO* cells. (The following calculations used somewhat more.) If 19 variables 
are stored for each cell, there are 1.9 x lo5 (=563060,) required words of storage. 
More accurate zoning can easily increase this number by a factor of 2 to 5. Arrays 
of this size are too large for the fast memory on available computers, so that larger 
(and slower) memories must be used. For efficient solutions of the magnetic field 
properties, both row and column access to the arrays is necessary. The CSQ storage 
procedure has the random-access feature built in. Any other method of storage (i.e., 
a sequential tape file or disk file) would force a completely different procedure of 
solution of the field equations or an inefficient program. 

An Eulerian code has several advantages for this application. If a program with 
a Lagrangian mesh were used, severe mesh distortion would occur in the high explosive 
material and in the region of the contact of the armature and coil. This would neces- 
sitate frequent rezones of the Lagrangian mesh, a task which is both time consuming 
and undesirable. A second difficulty is that a Lagrangian mesh normally puts cells 
only in the materials. No mesh would exist in void regions, which can, of course, 
contain magnetic fields. This would force the use of a mesh continuation or separate 
mesh to treat the field properties. 

CSQ can work in either rectangular or cylindrical coordinates. In the present 
situation, only cylindrical coordinates will be considered. The notation is changed 
from [S] to reflect this feature in more standard notation (r = radial coordinates; 
z = axial coordinates; 0 = azimuthal coordinates). The Lagrangian forms of the 
conservation laws which control two-dimensional material motion (rotational 
symmetry) with independent energy flow and in the presence of magnetic field and 
currents are 

conservation of mass, 

apiat = -pv . v; (1) 
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conservation of momentum, 

and conservation of energy, 

~&II --= 
at - f tr{(o + Q) . D} -b V . F + 4-t Ei (J * J); 

(2) 

(3) 

(4) 

where all quantities are defined in the following list. The thermodynamic and 
mechanical units are cgs. Practical cgs units are used for the electromagnetic quantities 
(.7 has units A/cm2, uC has units @/cm,B has units G). The notation will be as follows, 
except as noted in the text: 

p = density (g/cm3), 
t = time (set), 

V = velocity vector (cm/set), 
Em = specific material internal energy (erg/g), 

u = stress tensor (dyn/cmq, 
D = stretching tensor (set-l), 
Q = viscosity tensor (dyn/cm2), 

FIG. 

I i 
- “r 

X I’, P, T, E, oc, etc 
a-w 
J, 6, $’ 

R R R R 
i-2 i-2 i-l i-l Ri Ri Ri+l Ri+* Ri+l Ri+* 

2. 2. Placement of variables in finite difference mesh. Placement of variables in finite difference mesh. 

Z 
j+l 

Z 
j 

Z 
j-l 



336 FREEMAN AND THOMPSON 

P = energy flow flux vector (erg/cm2 set), 
4 = specific internal energy production rate (erg/cm set), 
J = current density (A/cm2), 
B = magnetic field intensity (G), 
uc = electrical conductivity (Pi/cm). 

The inclusion of the J and B terms in the CSQ finite difference relations is straight- 
forward. The placement of variables in the finite difference mesh is shown in Fig. 2. 
This method works well and requires little interpolation of variables within the grid. 
Other details of the difference method are available in [8]. 

III. THE MAGNETIC FIELD SOLVER 

Figure 3 shows a cross section of the computational region defined for the model. 
All three-dimensional effects are omitted, and a cylindrically symmetric region is 
considered. A further approximation made is to neglect coil motion in the field 
solver. Earlier studies performed without this approximation indicated that significant 
coil expansion occurred only after the armature contacted the coil. Motion of the coil 
after that time had no effect on the field generation. Because the explosive is detonated 
from only one end, the armature makes initial contact with the coil at that end. This 
point of contact then sweeps up the coil, effectively shorting the helical turns together. 
This decrease in the coil inductance is one of the sources of current amplification, 
the remaining one being the inductance decrease due to the reduction in cross- 
sectional area of the vacuum region between the coil and armature. As the point of 

BOUNDARIES OF 
COMPUTATIONAL 
MESH 

FIG. 3. Computational region. 
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contact between the aramature and coil sweeps up the generator, the region of 
computation of the magnetic fields is also adjusted in phase. No field calculations 
take place in the conductors in axial regions below the point of contact, primarily 
because these regions are decoupled by the turns shorting and do not affect the 
generator performance. None of these approximations apply to the motion calcula- 
tions of CSQ. The limitations here are used only in the field solver. 

We write Maxwell’s equations as (using practical cgs units) 

V x E = -10-8(8B/8t), (5) 
V x H = 0.4rJ, (6) 

where the displacement current has been neglected. In the two conductors, we have 
as Ohm’s law 

J = a,[E + 10-s(V x B)]. (7) 

Equations (5~(7) can be combined with the definitions E = -lO-s aA/&, H = B 
(free-space permeability), and V x A = H to yield, 

where Y = rAO is the magnetic stream function, A0 is the vector potential, and 
K,, = 10°/4~ac is the magnetic diffusivity. In the vacuum regions surrounding the 
conductors, we have 

a2Y 
----+a22= * ar2 

I aY a2v o 
r ar (9) 

The components of the magnetic field are given by 

The initial studies reported used Eq. (8) in both the coil and armature and Eq. (9) 
for the vacuum region [9, lo]. This turned out to be disadvantageous when the 
circuit equation was added. It WCS found to be extremely difficult to enforce the 
helicity requirement (the constancy of the total current in each coil loop) using the 
stream function definition in the coil. The reason for this is the inductive coupling 
between the coil turns. The stream function at any specific coil loop location consists 
of contributions from itself, plus all remaining turns. It thus is quite difficult (without 
using a large inductance matrix) to specify boundary conditions on the stream function 
which would yield equal total currents in all coil loops. 

Because of this difficulty, a new model for the coil was derived, based on the current 
density rather than the stream function. The sequence of operations is as follows: 

1. Begin with an initial current density distribution Jo in the coil at an initial 
time t o ; also begin with an initial stream function definition Y everywhere in the 
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computational region, including the coil, consistent with both the boundary conditions 
and the initial coil current densities. This is obtained by solving the equation 

a?P 1 a!? a?P 
-----+a22= ar2 r ar 

-0.47~ rJ, (11) 

instead of Eq. (9). Compute the stream function on all boundaries in terms of the 
analytic elliptic integral formdation (Section V). 

2. Begin the actual time advancement by diffusing the current densities in the 
coil, using 

where the axial diffusion is omitted because of electrical insulation between coil turns. 
(Equation (12) neglects spatial variations in the electrical conductivity.) 

3. Compute the stream function in the armature using Eq. (8). 
4. Compute predicted (first-order linear extrapolation in time) coil circuit total 

current 1, (equal for all coil loops). 
5. Adjust magnitudes of all diffused coil current densities consistent with the 

predicted total coil current. This is done by multiplying the current densities deter- 
mined in step 2 by the ratio I,/& , where Ii is the total current in each loop at the end 
of step 2. 

6. Obtain predicted stream function everywhere, using Eq. (11). (The stream 
function in the armature region is already computed by step 3 and must be held 
fixed during this step, i.e., the computed values of the stream function in the armature 
are treated as boundary conditions when integratingEq. (1 l).)Recompute the boundary 
conditions (Section V) at the start of this step, using the coil currents of step 5 and 
the armature currents of step 3. 

7. Define coil inductance and resistance in terms of the predicted stream function 
and compute a corrected coil current at t %+I, the new time level, using the circuit 
equation (including the external load impedance). Adjust coil current density magni- 
tudes consistent with the corrected total current. 

8. Compare predicted and corrected current values; if they differ by more 
than a few percent, repeat step 6 to obtain the corrected stream function everywhere. 
Check boundary stream functions for convergence; return to step 6 if unconverged. 

The preceding sequence of operations (from step 2 through step 8) is performed at 
each time step of the calculation. The procedure is most simply stated to be an iteration 
on the coil circuit current and the boundary conditions (determined in terms of the 
internal current distribution) such that at each time level a completely self-consistent 
time-centered solution is achieved. In the converged state the stream function every- 
where, including the boundaries, is consistent with the current density distribution 
throughout the mesh. At the same time, the total circuit current is consistent with 
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the inductance and resistance (Section VI) determined from the field distribution. 
At the beginning of each step, the hydrodynamic portion of the code supplies the 
armature location, the velocity distribution in the armature, and conductor tempera- 
tures to compute gc . At the end of each time step, the field solver stores the magnetic 
fields and currents to be used in both conductors at the next hydro time step. 

IV. THE COMPUTATIONAL MESH 

One of the principal difficulties of this application is spatial resolution of the small 
skin depths in the armature and the coil. These skin depths are typically very small, 
on the order of a few percent of the coil radius. A uniform spatial difference mesh 
typically requires between 100-200 zones in each direction to even minimally provide 
this resolution. 

The magnetic field solver and the hydrodynamics portion of the code use the same 
basic Eulerian mesh, with the field quantities defined at the mesh corners as shown in 
Fig. 2. Some improvement in spatial resolution was achieved by using unequally 
spaced zones in the radial direction. The axial mesh was chosen equal to the coil turn 
spacing, thereby precluding any study of axial diffusion in the coil turns or proximity 
effects between loops. Inasmuch as the coils considered were wound at a constant 
pitch, this resulted in uniform axial zones. 

V. BOUNDARY CONDITIONS 

Solution of Eq. (11) over the region of computation requires boundary conditions 
on the stream function. Because of cylindrical symmetry, Y(0, z) = 0 at the axis 
of symmetry. The previously reported computations employed Neumann boundary 
conditions elsewhere, with W/az = H, = 0 at the two axial boundaries and W/i% = 
Hz = 0 at the outer radius [9, IO]. These boundary conditions are appropriate for 
conductors which are long compared with their radii. Inasmuch as the cases studied 
violated this condition, errors resulted in the inductance calculation. The computed 
generator inductance was typically about 25 % high when compared with experimental 
values. 

More recent calculations have been performed which take proper account of the 
fringing fields at the boundaries of the generator. This is done by evaluating the 
analytic solution for the stream function of the current loops, obtaining the correct 
boundary value by summing the contributions from all the internal current loops. 
Finite pitch effects of the helix are omitted in this treatment. 

Consider a point on the boundary given by the coordinates (r, z). Let a particular 
current loop (in either the coil or the armature) be located at (rc , zc). From Smythe 
[12] the magnetic stream function at the point (r, z) produced by a current loop of 
magnitude Z located at (rc , z,) is 

Y(r, z) = 0.2 Zr[(l + ?))” + z2]1/2 [(I - k2/2) K - E], (13) 
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where ? = rc/r, I = (z - z,)/r, k2 = 4?/[(1 + f)” + Z”], and Kand E are the complete 
elliptic integrals of the first and second kind, of the argument k. 

Prior to each time step in the field calculation, the stream function at both axial 
boundaries and the outer radial boundary is computed by summing contributions 
of the form given by Eq. (13) over all interior current loops. This yields a fringing field 
distribution consistent with the boundary condition Y -+ 0 as r, z + 00. It was 
necessary to include the boundary condition computation in the major iteration loop 
to ensure, as indicated in Eq. (13), that the loop currents I and the boundary values 
of Y were fully self-consistent. The use of these boundary conditions reduced the 
error in the inductance calculation to only a few percent. Prestoring the geometric 
factors which were invariant in time permitted this treatment to be employed with 
a negligible decrease in computational speed. Similar treatments have been used in 
other 2D MHD work [13] and in recent calculations of electron ring accelerator 
behavior [14]. 

VI. GENERATOR INDUCTANCE AND RESISTANCE 

A circuit diagram of the generator and load is shown in Fig. 4. The charging 
source is used to establish the initial current. At the desired level, the charging circuit 
is explosively switched out of the circuit by the shorting switch. The current IC in 
the coil circuit is then governed by 

dldt (We) + Rdc = -%, , (14) 

where the total circuit inductance LT consists of LL , the load inductance, plus L, , 
the generator inductance. The total resistance RT is the sum of RL , the load resistance, 
plus Rc , the coil resistance. The loss term FL represents the diffused flux switched 
out of the load circuit by the moving contact between the armature and the coil 
[l, 3,4]. We obtain the generator inductance from the magnetic stream function 
by equating the lumped-parameter field energy definition to the computed value 

-&L&2 = 8 c YJ, 25-r x 10-8, 
(i 1 

LOAD 
FIG. 4. CMF generator circuit. 
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where the right-hand side of Eq. (15) is summed over all loops of the coil. Since the 
current Ii in the helical coil is constant and equal to IC for all loops, we have that 

(16) 

The coil resistance R, is similarly obtained by equating the lumped-parameter coil 
dissipation with the computed value, 

I,=Rc = j- J2/oc dV, (17) 

where dV is the volume element, dV = 2nr dr dz. Since each coil turn has an axial 
width dz and a radial thickness of a number of zones, we have 

where the integral in Eq. (18) is numerically evaluated for each coil loop, and the 
summation extends over all loops, representing the fact that the turns can be considered 
to be connected in series. 

Y 
The flux loss term pL due to flux diffusion into the coil, YLC , and the armature, 

is given by pL = Cj YL /At + cj ?P, /At, where the summation extends only 
okr’the coil turns and armatuie length sho;ed between time t and t + At. 

VII. NUMERICAL METHODS FOR THE FIELD SOLVER 

At each time step, it is necessary to solve two basic equations for the stream function, 
namely, Eq. (8) in the armature and Eq. (11) elsewhere. Equation (8) is integrated 
in time using the explicit flux-corrected transport method of Boris and Book [15]. 
A time-splitting of the equation is performed, so that the first half of the time step 
is used to integrate the radial terms and the second half is used to integrate the axial 
terms. The difference equations for this procedure and a variety of comparisons with 
analytic test cases have been discussed previously [9, IO]. Recent modifications have 
generalized the difference equations for a variably spaced (but fixed) mesh. 

It is necessary to obtain the solution of Eq. (11) for the stream function in the 
vacuum and coil regions. The second-order accurate difference equation for Eq. (11) 
is given by 

-cjK+LZ + (2 + Aj + cj)yj,Z - AjYj--I,l - (yj,l+l + Yj,&J = Fj.1, (19) 
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where 
Ai = (1 + d+/2r,) flz2/d-dAv, 
cj = (1 - d-/2rJ 422/4+4,, ) 

A+ = rj+l - ri , 
A- = ri - rj-l , 

A Av = (A+ + A-)/Z, 
Fj,l = 0.4 nAz2 rjJj,l . 

Equation (19) is written assuming that the mesh is variably spaced in the radial 
direction, but uniform in the axial direction. The j-index refers to radial mesh points 
and the l-index refers to axial mesh points. 

Equation (19) was solved by the alternating direction implicit (ADI) method 
using the parameter sequence of Wachspress [ 161. The approach is an iterative method 
in which each iteration involves splitting Eq. (19) into two implicit substeps, 

(2W 

The convergence parameters 5” are varied at each iteration to improve convergence. 
The tridiagonal matrix Eqs. (20a) and (20b) are solved by an efficient two-pass direct 
method described by Richtmyer and Morton [17]. A six-parameter variation of 6” 
was used, given by 

4 co9 rr/2m 
‘+I = (cot2 7r/2m)nJ5 (n = o,..., 5). 

The parameter m was set equal to 100, the approximate number of meshes in each 
direction. The iteration parameter sequence was repeated after every six iterations. 
Convergence for a mesh of about 100 x 100 was obtained in about 25 iterations. 
The relative convergence criterion invoked was that the stream function at no mesh 
point varied by more than 1O-4 of its absolute value from the final to the preceding 
iteration. The convergence obtained was about a factor of six faster than that with a 
constant convergence parameter t. As this portion of the field solver remains the 
most time-consuming, this improvement was critical in terms of overall program speed. 

VIII. EXAMPLE CALCULATIONS 

In this section the results of two COMAG calculations are given. The actual 
generator is the same for the two cases. The first case (L14) used a high inductance 
external load, while the second case (L15) used a low inductance load, relative to the 
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generator inductance. The initial conditions for the circuit properties are shown in 
Table I for both calculations. 

The device configuration is shown in Fig. 5. The center line of the cylindrically 
symmetric system is at the left of Fig. 5. The coil winding is much more closely spaced 
than shown in Fig. 1; the pitch is approximately the same as the wire diameter and 
appears continuous on the plot. The coil is enclosed in a packing material, which is 
not shown in Fig. 1. 

TABLE I 

Initial Circuit Parameters 

L14 L15 

Current (A) 220 220 
Coil inductance (pH) 78.42 78.42 
Load inductance (rH) 48.58 0.1 
Coil resistance” (Q) 1.12 1.12 
Load resistance (Q) 0.13 0.015 

a For uniform current distribution. 

I DtiONATlON POINT 

FIG. 5. Example of generator configuration. 
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The high explosive used was LX-04 with an initial density of 1.865 g/ems, detonation 
velocity of 8.47 x 10s cm/set, and Chapman-Jouguet pressure of 3.4 x 10lf dyn/cm2. 
For this configuration 5.35 p set was required to complete the burn with an energy 
release of about 7.2 x loll erg [18]. Both the armature and coil were copper with an 
initial density of 8.94 g/cm3. The thermodynamic and elastic properties were as listed 
by Thompson [II]. The electrical conductivity properties were taken from Knoepfel 
r11. 

The purpose of the coil packing material is to constrain the material after the 
armature-coil collision. In the experimental configuration it also served to hold the 
coil in place. The details of its material properties are not important to the calculations 
other than being sufficiently massive. Hence for reasons of economy, this material 
was taken to be the same as the explosive. 

The zoning of these calculations is quite difficult. There are many conflicting 
requirements from the various computational sections and computer storage limitation 
The following represents a compromise which attempts to satisfy the minimum 
requirements for each section and still fit the data into the CDC 7600. A constant 
spacing in the 2 coordinate is used with a total of 100 meshes. There are 70 meshes 
within the length of the coil. The radial zoning is more complex with a total of 104 
variably spaced meshes. The smallest meshes are 0.00839 cm near the coil, while the 
width near the armature is 0.013 cm, with a smooth variation between the coil and 
armature. Considerably larger meshes are used in the explosive and packing material 
regions. The total number of cells is then 1.04 x lo*. Each calculation required about 
6.5 hr of central processor time on the CDC 7600. 

The mechanical response for the L15 case is shown in the left half of Fig. 6a to 6e. 
The plots are produced with the reflection about r = 0. About 5 psec after the start 
of detonation, the first contact between the armature and the coil packing is made; 
the first contact of the armature and coil is at 5.75 psec. The complete length of the 
coil is swept out by 8.76 psec. The pressure at the impact surface is sufficiently high 
to yield considerable heating, but this occurs after the coil turn is removed from the 
circuit. Both the coil and armature remain well below the melting point while in the 
circuit for this configuration. 

The computed field lines are shown on the right-hand sides of the figures. The 
conductors are outlined by asterisks. Figure 6a has the same field of view (r - z) 
as the material configuration plots. The field of view in the other figures is reduced 
in the radial coordinate for clarity as shown. The large increase in the magnetic 
field strength as the calculation proceeds forces a change in the scale for the plotted 
field lines. The two marked lines are at the same field strengths in all plots. 

Figure 7 shows three-dimensional views of the stream function with the hidden 
sections of the surface removed. Both have the same scale and are plotted directly 
from the code output without smoothing. The lack of noise in the solution is evident. 
At the end of the calculation the Y scale would have to be changed by a factor of 10 
for the surface to be shown in the same plot height. 

The mechanical response is nearly identical for the two calculations L14 and L15. 
This implies that the magnetic terms in Eqs. (2) to (4) are not large relative to other 
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FIG. 7. Three-dimensional view of stream function for LE. 

9 TIME (PSI TIME (MS) 

FIG. 8. Coil resistance for L14 and L15. 
FIG. 9. Coil inductance for L14 and L15. 

terms through most of the material motion. They did become large in L15 but only 
near the end of the calculation and for a very short itme. 

Figures 8 and 9 show the circuit characteristics of the device for both calculations. 
The static coil resistance is 1.12 52. The initial resistance drop in Fig. 8 reflects the 
the fact that the initial current was assumed to be a surface current which slowly 
diffused into the wire. The break at 5.75 psec is the start of coil-armature shorting. 

Figures 10 and 11 compare the computed and experimental currents. Experimental 
values were obtained from Leeman [19]. The agreement during most of the generator 
operation is excellent. The computed currents for the low inductance case are higher 
than the experimental values only near the end of the generator operation, a time 
corresponding to shorting of the last few turns of the coil. There are many possible 
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FIG. 10. Computed and experimental (0) currents for L14. 
FIG. 11. Computed and experimental (0) currents for LIS. 

reasons for this disagreement including turn-to-turn electrical breakdown in the coil, 
delayed electrical shorting of the armature and coil caused by the insulating material, 
instabilities or three-dimensional behavior in armature expansion, venting of explosive 
gases into the region between the armature and coil, residual inductances of the 
generator output and return connections, and three-dimensional effects at the end of 
the generator where the helical coil couples to the output connectors. There are also 
only a few meshes in the region of computation important to the circuit properties. 
These and other effects are under study. 

IX. CONCLUSIONS 

We have described the construction of COMAG, a code designed to study CMF 
generators. The code provides a self-consistent 2D MHD description of the generator, 
including the effects of the external load. 

Because of the complexity of the physical model, COMAG calculations are quite 
time-consuming, requiring hours of CDC 7600 time. These calculations will thus be 
of value in studying the details of important nonlinear physical effects, rather than 
being useful as a design tool. A recent report by Tucker and Leeman [20] describes 
a simplified lumped-parameter circuit model of the generator which runs in a few 
minutes on the CDC 6600. This code provides a capability for inexpensive design 
parameter variations, with the final designs selected to be studied using COMAG. In 
addition, the accuracy of the various lumped-parameter circuit approximations can be 
studied using COMAG. Finally, the numerical techniques described herein have 
applicability to a broad class of 2D MHD problems, including a study of advanced 
MHD generators [21] and magnetic field effects on electron beam fusion targets [22]. 
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